X

Скопируйте код и вставьте его на свой сайт.

Ширина px

Вы можете уменьшить размер презентации, указав свой размер!

Эксперт. Общие подходы к формированию критериев оценивания

ЭКСПЕРТ. ОБЩИЕ ПОДХОДЫ К ФОРМИРОВАНИЮ КРИТЕРИЕВ ОЦЕНИВАНИЯ Бельская О.А., учи...
«Не может быть такого «Что хочу, то и поставлю!». Это время прошло.» Васильев...
Чем же эксперт отличается от учителя?
ЭКСПЕРТ Не случайный учитель. Это человек, принявший на себя функции государс...
ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЙ С РАЗВЕРНУТЫМ ОТВЕТОМ ЗАКЛЮЧАЕТСЯ В СЛЕДУЮЩЕМ...
При определении шкалы балловых оценок за выполнение заданий опирались на след...
− присутствием и правильностью приведенной последовательности всех необходимы...
К ГРУБЫМ ОШИБКАМ ОТНОСЯТСЯ ошибки, которые обнаруживают незнание учащимися фо...
К НЕГРУБЫМ ОШИБКАМ К НЕДОЧЕТАМ ОТНОСЯТСЯ ОТНОСЯТСЯ вычислительные ошибки, нер...
Если одна и та же ошибка (недочет) встречается несколько раз, то это рассматр...
В соответствии с моделью оценивания учащийся, демонстрирующий умение решить т...
ОБ ОПИСКАХ И ГРУБЫХ ОШИБКАХ Одной из важных целей обучения математике являетс...
ОБ ОПИСКАХ И ГРУБЫХ ОШИБКАХ Неверное употребление математической терминологии...
ОБ ОПИСКАХ И ГРУБЫХ ОШИБКАХ Серьезное непонимание существа дела проявляется в...
ОБ ОПИСКАХ И ГРУБЫХ ОШИБКАХ «Путаница» в обозначениях совокупности (квадратна...
ОБ ОПИСКАХ И ГРУБЫХ ОШИБКАХ В одной из работ было предложено решить весьма не...
Рациональность выбранного школьником метода решения задачи не имеет никакого ...
ЧАСТЬ 2 Задание № 17 – 2 балла Задания № 18 -19 – 3 балла Задания № 20 – 21 –...
Задание 17 (2 балла). За решение выставляется 1 балл, если оно не содержит ош...
В 1-Й ДЕНЬ ПРОВЕРКИ: Договориться об общих позициях, подходах в критериях Есл...
ВАСИЛЬЕВА Е.Н.: «Не додумывайте за учащихся!»
Класс
Автор

Эксперт. Общие подходы к формированию критериев оценивания

Описание презентации по отдельным слайдам:

1 слайд

ЭКСПЕРТ. ОБЩИЕ ПОДХОДЫ К ФОРМИРОВАНИЮ КРИТЕРИЕВ ОЦЕНИВАНИЯ Бельская О.А., учитель математики МОУ «Иланская СОШ № 1», руководитель РМЦ УМ, председатель ТПК по математике

2 слайд

3 слайд

«Не может быть такого «Что хочу, то и поставлю!». Это время прошло.» Васильева Е.Н.

4 слайд

Чем же эксперт отличается от учителя?

5 слайд

ЭКСПЕРТ Не случайный учитель. Это человек, принявший на себя функции государственного контроля Профессионал, хороший математик Должен знать Свой функционал Основные документы по математике

6 слайд

ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЙ С РАЗВЕРНУТЫМ ОТВЕТОМ ЗАКЛЮЧАЕТСЯ В СЛЕДУЮЩЕМ: решение должно быть математически грамотным и полным, правильным, из него должен быть понятен ход рассуждений учащегося

7 слайд

При определении шкалы балловых оценок за выполнение заданий опирались на следующие положения: 1) Задания с развернутым ответом рассчитаны на учащихся, способных продемонстрировать следующие умения: − синтезировать способ решения задачи, используя для этого знания, полученные при изучении различных разделов курса; − обосновать свои последующие действия; − безошибочно выполнить соответствующие преобразования и вычисления; − учитывать при получении конечного ответа условие задачи. 2) Учащиеся, имеющие хорошую подготовку по предмету, не должны допускать грубых ошибок (геометрических, математических, логических, вычислительных) при выполнении соответствующих построений и математических выкладок. 3) Оценка заданий определяется полнотой и правильностью решения проблемы, поставленной в условии задачи.

8 слайд

− присутствием и правильностью приведенной последовательности всех необходимых шагов решения, отвечающих используемому верному методу решения; − правильностью обоснования ключевых моментов решения; − правильностью выполнения соответствующих построений и вычислений; − верным конечным ответом и его соответствием условию задачи. Если решение учащегося отвечает всем этим требованиям, то его можно считать полным и правильным. В этом решении не должно быть описок или ошибок, которые могут привести к неверному ответу. Полнота и правильность решения определяются:

9 слайд

К ГРУБЫМ ОШИБКАМ ОТНОСЯТСЯ ошибки, которые обнаруживают незнание учащимися формул, правил, основных свойств, теорем и неумение их применять;

10 слайд

К НЕГРУБЫМ ОШИБКАМ К НЕДОЧЕТАМ ОТНОСЯТСЯ ОТНОСЯТСЯ вычислительные ошибки, нерациональное решение, описки, недостаточность или отсутствие пояснений, о которых специально упоминается в конкретизированных критериях, разработанных для оценки конкретного задания, а также неточности в обоснованиях, которыми являются замена свойства на определение или признак, неверное название теорем или формул.

11 слайд

Если одна и та же ошибка (недочет) встречается несколько раз, то это рассматривается как одна ошибка (один недочет). Зачеркивания в работе свидетельствуют о поисках решения, что считать ошибкой или недочетом не следует.

12 слайд

В соответствии с моделью оценивания учащийся, демонстрирующий умение решить ту или иную задачу второй части экзаменационной работы, получает установленный балл, или балл, на 1 меньше установленного (в случае, если решение содержит несущественный недочет или даже несущественную ошибку); поэлементное оценивание не предусматривается.

13 слайд

ОБ ОПИСКАХ И ГРУБЫХ ОШИБКАХ Одной из важных целей обучения математике является формирование умения ясно, точно, логически грамотно выражать свои мысли, как в устной, так и в письменной форме. Однако цель эта достигается далеко не всегда. ≠ «Сочинение» Наряду с работами-сочинениями нередко можно видеть и такие работы, в которых сплошным текстом идут выкладки без выделения каких-либо этапов решения, вообще не содержащих никаких пояснений.

14 слайд

ОБ ОПИСКАХ И ГРУБЫХ ОШИБКАХ Неверное употребление математической терминологии и символики: «найдем корни квадратного трехчлена» ≠ «решим квадратный трехчлен»; «решим неравенство» ≠ «решим уравнение». Можно встретить такое ошибочное выражение, как «построим график прямой».

15 слайд

ОБ ОПИСКАХ И ГРУБЫХ ОШИБКАХ Серьезное непонимание существа дела проявляется в неуместном употреблении логических союзов «И» и «ИЛИ» - «путаница» между употреблением этих союзов. Например, результат решения квадратного уравнения записывают так: 2 или 3 (или даже употребляют в этой записи знак совокупности). В то время как задача состоит в нахождении множества корней уравнения, в соответствии с чем требуется перечислить элементы этого множества (а не записывать дизъюнкцию высказываний). Это может быть сделано разными способами, например: х = 2, х = 3; 2 и 3; 2; 3.

16 слайд

ОБ ОПИСКАХ И ГРУБЫХ ОШИБКАХ «Путаница» в обозначениях совокупности (квадратная скобка) и системы (фигурная скобка).

17 слайд

ОБ ОПИСКАХ И ГРУБЫХ ОШИБКАХ В одной из работ было предложено решить весьма непростую систему двух уравнений с двумя переменными, которой удовлетворяет три пары чисел. Главной проблемой для многих, дошедших практически до конца решения, явилась запись ответа. Они либо не объединяли найденные значения в пары, либо объединяли, путая порядок. Это еще раз свидетельствует об отсутствии понимания существа дела: все преобразования выполнены, а логически решение не завершено.

18 слайд

Рациональность выбранного школьником метода решения задачи не имеет никакого значения: за нерациональность оценка не снижается, а за рациональность не повышается. Учитывается исключительно математическая правильность текста решения.

19 слайд

ЧАСТЬ 2 Задание № 17 – 2 балла Задания № 18 -19 – 3 балла Задания № 20 – 21 – 4 балла

20 слайд

Задание 17 (2 балла). За решение выставляется 1 балл, если оно не содержит ошибок, но при этом не является полным, например, отсутствует ответ на дополнительный вопрос (при его наличии); или: в решении имеется одна описка/ошибка, не влияющая принципиально на ход решения, с ее учетом все дальнейшие шаги выполнены верно, решение доведено до конца. Задания 18 и 19 (3 балла). За решение выставляется 2 балла, если в нем нет ошибок, но при этом оно не является полным, например, отсутствует ответ на дополнительный вопрос (при его наличии); или: ход решения верный, получен ответ, но имеется описка или непринципиальная ошибка (например, ошибка в вычислении), и с ее учетом дальнейшие шаги выполнены верно, решение доведено до конца. Задания 20 и 21 (4 балла). За решение выставляется 3 балла, если решение «почти верное», т.е. ход решения правильный, оно доведено до конца, но при этом имеется одна непринципиальная вычислительная ошибка/описка, с ее учетом дальнейшие шаги выполнены верно; или имеются погрешности в применении символики и терминологии.

21 слайд

В 1-Й ДЕНЬ ПРОВЕРКИ: Договориться об общих позициях, подходах в критериях Если работа не подходит под критерии, то надо исходить из позиции полноты, логики, правильности

22 слайд

ВАСИЛЬЕВА Е.Н.: «Не додумывайте за учащихся!»