X

Скопируйте код и вставьте его на свой сайт.

Ширина px

Вы можете уменьшить размер презентации, указав свой размер!

Аксиомы стереометрии

Учитель математики МБОУ «СОШ№31» г. Норильск Шеер Елена Анатольевна Аксиомы с...
Повторить аксиомы планиметрии Познакомиться с аксиомами стереометрии Уметь со...
Что изучает планиметрия? Как обозначают прямые и точки на плоскости? Какие ак...
Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точк...
Через любые две точки можно провести прямую и только одну. Аксиома №2 а А В
Из трех точек только одна лежит между двумя другими. Аксиома №3 а А В С
Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна су...
Прямая разбивает плоскость на две полуплоскости. Аксиома №5 а
Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол...
На любой полупрямой от ее начальной точки можно отложить отрезок заданной дли...
На любой полупрямой от начальной точки можно отложить угол с заданной градусн...
Каков бы ни был треугольник, существует равный ему треугольник в заданном рас...
Через точку, не лежащую на данной прямой, можно провести на плоскости не боле...
Что изучает стереометрия? Основные фигуры в пространстве? Плоскость на рисунк...
C1 C2 C3 Аксиомы стереометрии
А є α В є α Аксиома №1 Какова бы ни была плоскость, существуют точки в простр...
Аксиома №2 Если две различные плоскости имеют общую точку, то они пересекаютс...
Аксиома №3 Если две различные прямые имеют общую точку, то через них можно пр...
А) Как бы ни было, существуют точки в пространстве, принадлежащие этой плоско...
А) Если плоскости имеют общую точку, то они пересекаются по прямой, проходяще...
А) Через две прямые можно провести плоскость и притом только одну. Б) Если дв...
1 – Б) Какова бы ни была плоскость, существуют точки в пространстве, принадле...
Если две различные прямые имеют общую точку, то через них можно провести плос...
Какова бы ни была плоскость, существуют точки в пространстве, принадлежащие э...
Если две различные плоскости имеют общую точку, то они пересекаются по прямой...
1) – В 2) – А 3) – Б ПРОВЕРЬ СЕБЯ Ответы на Тест №2
Группа 1, 4 – задача №1 Группа 2, 5 – задача №2 Группа 3, 6 – задача №3 Практ...
Из задач №1-4 (две обязательные для решения) Третья задача по выбору Составит...
Итог урока
СПАСИБО ЗА ВНИМАНИЕ
Класс
Автор

Аксиомы стереометрии

Описание презентации по отдельным слайдам:

1 слайд

Учитель математики МБОУ «СОШ№31» г. Норильск Шеер Елена Анатольевна Аксиомы стереометрии.

2 слайд

Повторить аксиомы планиметрии Познакомиться с аксиомами стереометрии Уметь соотносить математическую формулировку аксиомы с графическим изображением Уметь формулировать ответы, используя строгость математического языка Продолжать учиться работать в группах Совершенствовать навыки работы с тестами Цели урока

3 слайд

Что изучает планиметрия? Как обозначают прямые и точки на плоскости? Какие аксиомы планиметрии вы помните? Планиметрия

4 слайд

Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей. A B Аксиома №1 а

5 слайд

Через любые две точки можно провести прямую и только одну. Аксиома №2 а А В

6 слайд

Из трех точек только одна лежит между двумя другими. Аксиома №3 а А В С

7 слайд

Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой. Аксиома №4 АС > 0; АС = АВ + ВС

8 слайд

Прямая разбивает плоскость на две полуплоскости. Аксиома №5 а

9 слайд

Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180º. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами. Аксиома №6 (ab)>0; (ac) = 180º (ac) = (ab) + (bc) а b c

10 слайд

На любой полупрямой от ее начальной точки можно отложить отрезок заданной длины и только один. Аксиома №7 а В

11 слайд

На любой полупрямой от начальной точки можно отложить угол с заданной градусной меры, меньшей 180º и только один. Аксиома №8 a

12 слайд

Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно заданной полупрямой. Аксиома №9 а

13 слайд

Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной. Аксиома №10

14 слайд

Что изучает стереометрия? Основные фигуры в пространстве? Плоскость на рисунке изображается в виде…? Приведите примеры моделей плоскостей, окружающих нас. Стереометрия

15 слайд

C1 C2 C3 Аксиомы стереометрии

16 слайд

А є α В є α Аксиома №1 Какова бы ни была плоскость, существуют точки в пространстве, принадлежащие этой плоскости, и точки, не принадлежащие ей. α А В С С є α

17 слайд

Аксиома №2 Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку. А α β b

18 слайд

Аксиома №3 Если две различные прямые имеют общую точку, то через них можно провести плоскость и притом только одну. α b c A

19 слайд

А) Как бы ни было, существуют точки в пространстве, принадлежащие этой плоскости, и точки, не принадлежащие ей. Б) Какова бы ни была плоскость, существуют точки в пространстве, принадлежащие этой плоскости, и точки, не принадлежащие ей. В) Какова бы ни была плоскость, существуют точки в пространстве, принадлежащие этой плоскости. Г) Какова бы ни была плоскость, существуют точки в пространстве, не принадлежащие ей. Задание №1 ТЕСТ №1

20 слайд

А) Если плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку. Б) Если две различные плоскости имеют общую точку, то они пересекаются по прямой. В) Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку. Задание №2

21 слайд

А) Через две прямые можно провести плоскость и притом только одну. Б) Если две различные прямые имеют общую точку, то через них можно провести плоскость и притом только одну. В) Если прямые имеют общую точку, то через них можно провести плоскость. Задание №3

22 слайд

1 – Б) Какова бы ни была плоскость, существуют точки в пространстве, принадлежащие этой плоскости, и точки, не принадлежащие ей. 2 – В) Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку. 3 – Б) Если две различные прямые имеют общую точку, то через них можно провести плоскость и притом только одну. ПРОВЕРЬ СЕБЯ Ответы на Тест №1

23 слайд

Если две различные прямые имеют общую точку, то через них можно провести плоскость и притом только одну. Задание №1 ТЕСТ №2 А) В) Б)

24 слайд

Какова бы ни была плоскость, существуют точки в пространстве, принадлежащие этой плоскости, и точки, не принадлежащие ей. В) Б) А) Задание №2

25 слайд

Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку. Задание №3 В) А) Б)

26 слайд

1) – В 2) – А 3) – Б ПРОВЕРЬ СЕБЯ Ответы на Тест №2

27 слайд

Группа 1, 4 – задача №1 Группа 2, 5 – задача №2 Группа 3, 6 – задача №3 Практическая работа (Для самопроверки)

28 слайд

Из задач №1-4 (две обязательные для решения) Третья задача по выбору Составить задачу на применение аксиом (по желанию). Домашнее задание

29 слайд

Итог урока

30 слайд

СПАСИБО ЗА ВНИМАНИЕ