X

Скопируйте код и вставьте его на свой сайт.

Ширина px

Вы можете уменьшить размер презентации, указав свой размер!

Моделирование и формализация. Разработка и исследование математических моделей на компьютере

*
* Моделирование – это метод познания, состоящий в создании и исследовании мод...
* Модели – упрощенное подобие реального объекта Информационные модели Натурал...
* Натуральные или материальные модели
* Информационные модели Табличная информационная модель Иерархическая информа...
* В табличной информационной модели перечень однотипных объектов или свойств ...
* В иерархической информационной модели объекты распределены по уровням. Кажд...
* Сетевые информационные модели применяются для отражения систем со сложной с...
* Модели, описывающие состояние системы в определенный момент времени, называ...
* С помощью формальных языков строятся формальные информационные модели (мате...
* Логическая схема полусумматора И ИЛИ НЕ И А В Р=А&В
* Математическая модель – это система математических соотношений – формул, ур...
* Основные этапы разработки и исследования моделей на компьютере. Создание оп...
* Математические модели: Приближенное решение уравнений Определение экстремум...
* a b c f(x) y x Метод половинного деления.
* Н a, b, e f(x) c= (a+b)/2 p=f(a) f(c) p>0 b=c |b-a|>2e X0=(a+b)/2 X0 К a=c ...
* Cos(x) – x = 0 e 0.01 0.001 0.0001 0.00001 x0 0.742188 0.739258 0.739075 0....
* a b f(x) y x x x2 x1 f1 f2 Метод половинного деления.
* Н f(x) a, b, e |b-a|>2e f1>f2 a=x xm, fm K b=x PROGRAM EXTRA; VAR a, b, e, ...
* a b xi f(x) y x (xi ; yi) Вычисление площади криволинейной трапеции. Xi+1
* H f(x) a, b, n h=(b-a)/n S=(f(a)+f(b))/2 i=1, n-1 x=a+h i S=S+f(x) S=S h S ...
* H f(x) a, b, n h=(b-a)/N S=(f(a)+f(b))/2 i=1, n-1 x=a+h i S=S+f(x) S1=S1 h ...
* H f(x) a, b, e d=1; n=5; n=n*2; SUM;S2=s; d=(15/16)*ABS(S1-S2); S1=S2 d K P...
* Вычисление площади криволинейной трапеции с заданной точностью e n 0.001 96...
* Определение погрешности вычисления интеграла n e 100 0.000116 200 0.000029 ...
* Математическое моделирование с использованием ПК позволяет находить решения...
Класс
Автор

Моделирование и формализация. Разработка и исследование математических моделей на компьютере

Описание презентации по отдельным слайдам:

1 слайд

*

2 слайд

* Моделирование – это метод познания, состоящий в создании и исследовании моделей. Модель – это некий новый объект, который отражает существенные особенности изучаемого объекта, явления или процесса. Один и тот же объект может иметь множество моделей, а разные объекты могут описываться одной моделью.

3 слайд

* Модели – упрощенное подобие реального объекта Информационные модели Натуральные модели Формализация – замена натурального объекта его моделью

4 слайд

* Натуральные или материальные модели

5 слайд

* Информационные модели Табличная информационная модель Иерархическая информационная модель Сетевая информационная модель

6 слайд

* В табличной информационной модели перечень однотипных объектов или свойств размещен в первом столбце (или строке) таблицы, а значения их свойств размещаются в следующих столбцах (или строках) таблицы. Наименование устройства Цена (в у.е.) Системная плата 80 Процессор Celeron (1ГГц) 70 Память DIMM 128 Мб 15

7 слайд

* В иерархической информационной модели объекты распределены по уровням. Каждый элемент более высокого уровня может состоять из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня. Компьютеры Суперкомпьютеры Серверы Персональные компьютеры Настольные Портативные Карманные

8 слайд

* Сетевые информационные модели применяются для отражения систем со сложной структурой, в которых связи между элементами имеют произвольный характер.

9 слайд

* Модели, описывающие состояние системы в определенный момент времени, называются статическими информационными моделями. Модели, описывающие процессы изменения и развития систем, называются динамическими информационными моделями.

10 слайд

* С помощью формальных языков строятся формальные информационные модели (математические, логические и д.р.). Одним из наиболее широко используемых формальных языков является математика. Формальные информационные модели Математические модели Логические модели

11 слайд

* Логическая схема полусумматора И ИЛИ НЕ И А В Р=А&В

12 слайд

* Математическая модель – это система математических соотношений – формул, уравнений, неравенств и т.д., отражающих существенные свойства объекта или явления.

13 слайд

* Основные этапы разработки и исследования моделей на компьютере. Создание описательной информационной модели. Создание формализованной модели. Преобразование формализованной модели в компьютерную модель. Проведение компьютерного эксперимента. Анализ полученных результатов и коррекция исследуемой модели.

14 слайд

* Математические модели: Приближенное решение уравнений Определение экстремума функции Вычисление площади криволинейной трапеции

15 слайд

* a b c f(x) y x Метод половинного деления.

16 слайд

* Н a, b, e f(x) c= (a+b)/2 p=f(a) f(c) p>0 b=c |b-a|>2e X0=(a+b)/2 X0 К a=c да нет нет PROGRAM KOREN; VAR a, b, c, e, p, x0: REAL; FUNCTION f (x: REAL): REAL; BEGIN f:=cos(x)-x; END; BEGIN WRITE (‘Введите a, b, e’); READLN (a, b, e); WHILE ABS (b-a) > 2*e DO BEGIN c:= (a+b)/2; p:= f(a)*f(с); IF p>0 THEN a:=с ELSE b:=c; END; x0:= (a+b)/2; WRITELN (‘x0=’, x0:10:6); READLN; END.

17 слайд

* Cos(x) – x = 0 e 0.01 0.001 0.0001 0.00001 x0 0.742188 0.739258 0.739075 0.7390892

18 слайд

* a b f(x) y x x x2 x1 f1 f2 Метод половинного деления.

19 слайд

* Н f(x) a, b, e |b-a|>2e f1>f2 a=x xm, fm K b=x PROGRAM EXTRA; VAR a, b, e, xm, fm, x, x1, x2, f1, f2: REAL; FUNCTION f (x: REAL): REAL; BEGIN f:= - x*x – 9*x + 8; END; BEGIN WRITE (‘введите a, b, e’); READLN (a, b, e); WHILE ABS (b – a) > 2*e DO BEGIN x:= (a+b)/2; x1:= x - e; x2:= x + e; f1:= f(x1); f2:= f(x2); IF f1>f2 THEN b:=x ELSE a:=x; END; xm:= (b+a)/2; fm:= f(xm); WRITELN (‘xm=’, xm:10:6); WRITELN (‘fm=’, fm:10:6); READLN; END. да нет

20 слайд

* a b xi f(x) y x (xi ; yi) Вычисление площади криволинейной трапеции. Xi+1

21 слайд

* H f(x) a, b, n h=(b-a)/n S=(f(a)+f(b))/2 i=1, n-1 x=a+h i S=S+f(x) S=S h S K PROGRAM TRAPECYA; VAR n, i: INTEGER; a, b, h, x, y, s : REAL; FUNCTION f (x: REAL): REAL; BEGIN f = sin (x); END; BEGIN a:=0; b:=3.141592; WRITELN (‘введите n’); READLN (n); h:= (b-a)/n; s:= (f(a)+f(b))/2; FOR i:=1 TO n - 1 DO BEGIN x:= a + h*i; s:= s +f(x); END; S:=s*h; WRITELN (‘n’, n, ‘s’, s:10:6); READLN; END.

22 слайд

* H f(x) a, b, n h=(b-a)/N S=(f(a)+f(b))/2 i=1, n-1 x=a+h i S=S+f(x) S1=S1 h S K PROGRAM TRAPECYA; VAR n, i: INTEGER; a, b, h, x, y, s, s1, s2, d, e: REAL; FUNCTION f (x: REAL): REAL; BEGIN f = sin (x); END; PROCEDURE SUM; BEGIN h:= (b-a)/n; s:= (f(a)+f(b))/2; FOR i:=1 TO n - 1 DO BEGIN x:= a + h*i; s:= s +f(x); END; S:=s*h; WRITELN (‘n’, n, ‘s’, s:10:6); END; BEGIN a:=0; b:=3.14159; WRITELN (‘введите n’); READLN (n); SUM; s1:=s; n:= n*2;SUM; s2:=s; d:= (15/16)*ABS(s1-s2); WRITELN (‘del’, d:10:6); READLN; END. n=n*2;S2 d=(15/16)*ABS(S1-S2)

23 слайд

* H f(x) a, b, e d=1; n=5; n=n*2; SUM;S2=s; d=(15/16)*ABS(S1-S2); S1=S2 d K PROGRAM TRAPECYA; VAR n, i: INTEGER; a, b, h, x, y, s, s1 , s2, d, e: REAL; FUNCTION f (x: REAL): REAL; BEGIN f := sin (x);END; PROCEDURE SUM; BEGIN h:= (b-a)/n; s:= (f(a)+f(b))/2; FOR i:=1 TO n - 1 DO BEGIN x:= a + h*i; s:= s +f(x); END; S:=s*h; WRITELN (‘n’, n, ‘s’, s:10:6); END; BEGIN a:=0; b:=3.14159; WRITELN (‘введите e’); READLN (e); d:= 1; n:=5; SUM; s1:=s; WHILE d>e DO BEGIN n:= n*2;SUM; s2:=s; d:= (15/16)*ABS(s1-s2); WRITELN (‘del’, d:10:6); s1:=s2; END; READLN; END. S1 d>e

24 слайд

* Вычисление площади криволинейной трапеции с заданной точностью e n 0.001 96 0.0001 384 0.00001 768 0.000001 3072 0.0000001 12288

25 слайд

* Определение погрешности вычисления интеграла n e 100 0.000116 200 0.000029 500 0.000005 1000 0.000001

26 слайд

* Математическое моделирование с использованием ПК позволяет находить решения задач, которые нельзя решить аналитически. При использовании метода половинного деления при вычислении корня функции и экстремума функции точность вычисления задается пользователем, что влияет на длительность вычислительного процесса. Для уменьшения погрешности вычислений площади криволинейной трапеции необходимо увеличивать количество отрезков разбиения. Заданная точность вычисления площади криволинейной трапеции достигается многократным увеличением количества отрезков разбиения. Выводы: