X

Скопируйте код и вставьте его на свой сайт.

Ширина px

Вы можете уменьшить размер презентации, указав свой размер!

Дискретные модели данных в компьютере. Представление чисел

ДИСКРЕТНЫЕ МОДЕЛИ ДАННЫХ В КОМПЬЮТЕРЕ. ПРЕДСТАВЛЕНИЕ ЧИСЕЛ. 10 класс Презента...
ОБРАЗ КОМПЬЮТЕРНОЙ ПАМЯТИ
ГЛАВНЫЕ ПРАВИЛА ПРЕДСТАВЛЕНИЯ ДАННЫХ В КОМПЬЮТЕРЕ
Дискретность (от лат. discretus — разделённый, прерывистый), прерывность; про...
ЦЕЛЫЕ ЧИСЛА В КОМПЬЮТЕРЕ
ПРЕДСТАВЛЕНИЕ ЧИСЕЛ В ФОРМАТЕ С ФИКСИРОВАННОЙ ЗАПЯТОЙ Целые числа в компьютер...
Для хранения целых неотрицательных чисел отводится одна ячейка памяти (8 бит)...
ПРИМЕР. ОПРЕДЕЛИТЬ ДИАПАЗОН ЧИСЕЛ, КОТОРЫЕ МОГУТ ХРАНИТСЯ В ОПЕРАТИВНОЙ ПАМЯТ...
Для хранения целых чисел со знаком отводится две ячейки памяти (16 бит), прич...
Например, число 200210 = 111110100102 будет представлено в 16-ти разрядном пр...
ПРИМЕР. ОПРЕДЕЛИТЬ МАКСИМАЛЬНОЕ ПОЛОЖИТЕЛЬНОЕ ЧИСЛО, КОТОРОЕ МОЖЕТ ХРАНИТСЯ В...
Дополнительный код представляет собой дополнение модуля отрицательного числа ...
ПРИМЕР. ЗАПИСАТЬ ДОПОЛНИТЕЛЬНЫЙ КОД ОТРИЦАТЕЛЬНОГО ЧИСЛА –2002 ДЛЯ 16-ТИ РАЗР...
ПРАВИЛО ПОЛУЧЕНИЯ ДОПОЛНИТЕЛЬНОГО КОДА Для получения дополнительного кода отр...
ПРИМЕР ЗАПИСАТЬ ДОПОЛНИТЕЛЬНЫЙ КОД ОТРИЦАТЕЛЬНОГО ЧИСЛА –2002 ДЛЯ 16-ТИ РАЗРЯ...
ПРИМЕР. ВЫПОЛНИТЬ АРИФМЕТИЧЕСКОЕ ДЕЙСТВИЕ 300010 - 500010 В 16-ТИ РАЗРЯДНОМ К...
СЛОЖИМ ПРЯМОЙ КОД ПОЛОЖИТЕЛЬНОГО ЧИСЛА С ДОПОЛНИТЕЛЬНЫМ КОДОМ ОТРИЦАТЕЛЬНОГО ...
3) Переведем в десятичное число и припишем знак отрицательного числа: -2000. ...
МАТЕМАТИКА: множество целых чисел дискретно, бесконечно, не ограничено ИНФОРМ...
Класс
Автор

Дискретные модели данных в компьютере. Представление чисел

Описание презентации по отдельным слайдам:

1 слайд

ДИСКРЕТНЫЕ МОДЕЛИ ДАННЫХ В КОМПЬЮТЕРЕ. ПРЕДСТАВЛЕНИЕ ЧИСЕЛ. 10 класс Презентация для 10 класса

2 слайд

ОБРАЗ КОМПЬЮТЕРНОЙ ПАМЯТИ

3 слайд

ГЛАВНЫЕ ПРАВИЛА ПРЕДСТАВЛЕНИЯ ДАННЫХ В КОМПЬЮТЕРЕ

4 слайд

5 слайд

Дискретность (от лат. discretus — разделённый, прерывистый), прерывность; противопоставляется непрерывности. Например, дискретное изменение какой-либо величины во времени — это изменение, происходящее через определённые промежутки времени (скачками); система целых чисел (в противоположность системе действительных чисел) является дискретной . В физике и химии Д. означает зернистость строения материи, её атомистичность. ДИСКРЕТНОСТЬ [discretion] — прерывность; напр., изменение экономических показателей во времени всегда имеет прерывный характер, поскольку происходит скачками — от одной даты (года, месяца и т. д.) к другой. Понятие Д. противопоставляется понятию непрерывности.

6 слайд

7 слайд

8 слайд

ЦЕЛЫЕ ЧИСЛА В КОМПЬЮТЕРЕ

9 слайд

ПРЕДСТАВЛЕНИЕ ЧИСЕЛ В ФОРМАТЕ С ФИКСИРОВАННОЙ ЗАПЯТОЙ Целые числа в компьютере хранятся в памяти в формате с фиксированной запятой. В этом случае каждому разряду ячейки памяти соответствует всегда один и тот же разряд числа, а запятая находится справа после младшего разряда, т.е. вне разрядной сетки.

10 слайд

Для хранения целых неотрицательных чисел отводится одна ячейка памяти (8 бит). Например, число A2 = 101010102 будет хранится в ячейке памяти следующим образом: Максимальное значение целого неотрицательного числа достигается в случае, когда во всех ячейках хранятся единицы. Для n-разрядного представления оно будет равно: 2n - 1 1 0 1 0 1 0 1 0

11 слайд

ПРИМЕР. ОПРЕДЕЛИТЬ ДИАПАЗОН ЧИСЕЛ, КОТОРЫЕ МОГУТ ХРАНИТСЯ В ОПЕРАТИВНОЙ ПАМЯТИ В ФОРМАТЕ ЦЕЛОЕ НЕОТРИЦАТЕЛЬНОЕ ЧИСЛО. Минимальное число соответствует восьми нулям, хранящимся в восьми ячейках памяти, и равно нулю. Максимальное число соответствует восьми единицам, хранящимся в ячейках памяти и равно: A = 1*27 +1*26 +1*25 + 1*24 + 1*23 + 1*22 + 1*21 + 1*20 = 1*28 – 1 = 25510 Диапазон изменения целых неотрицательных чисел от 0 до 255.

12 слайд

Для хранения целых чисел со знаком отводится две ячейки памяти (16 бит), причем старший (левый) разряд отводится под знак числа (если число положительное, то в знаковый разряд записывается 0, если число отрицательное записывается 1). Представление в компьютере положительных чисел с использованием формата «знак-величина» называется прямым кодом числа.

13 слайд

Например, число 200210 = 111110100102 будет представлено в 16-ти разрядном представлении следующим образом: При представлении целых чисел в n-разрядном представлении со знаком максимальное положительное число (с учетом выделения одного разряда на знак) равно: A = 2n-1 - 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0

14 слайд

ПРИМЕР. ОПРЕДЕЛИТЬ МАКСИМАЛЬНОЕ ПОЛОЖИТЕЛЬНОЕ ЧИСЛО, КОТОРОЕ МОЖЕТ ХРАНИТСЯ В ОПЕРАТИВНОЙ ПАМЯТИ В ФОРМАТЕ ЦЕЛОЕ ЧИСЛО СО ЗНАКОМ. A10 = 215 – 1 = 3276710 Для представления отрицательных чисел используется дополнительный код. Дополнительный код позволяет заменить арифметическую операцию вычитания операцией сложения, что существенно упрощает работу процессора и увеличивает его быстродействие. Дополнительный код отрицательного числа A, хранящегося в n ячейках, равен 2n - A .

15 слайд

Дополнительный код представляет собой дополнение модуля отрицательного числа А до 0, поэтому в n-разрядной компьютерной арифметике: 2n - A + A ≡ 0 Это равенство тождественно справедливо, т.к. в компьютерной n-разрядной арифметике 2n ≡ 0. Действительно, двоичная запись такого числа состоит из одной единицы и n нулей, а в n-разрядную ячейку может уместиться только n младших разрядов, т.е. n нулей.

16 слайд

ПРИМЕР. ЗАПИСАТЬ ДОПОЛНИТЕЛЬНЫЙ КОД ОТРИЦАТЕЛЬНОГО ЧИСЛА –2002 ДЛЯ 16-ТИ РАЗРЯДНОГО КОМПЬЮТЕРНОГО ПРЕДСТАВЛЕНИЯ Проведем вычисления в соответствии с определением дополнительного кода: Проведем проверку с использованием десятичной системы счисления. Дополнительный код 6353410 в сумме с модулем отрицательного числа 200210 равен 6553610, т.е. дополнительный код дополняет модуль отрицательного числа до 216 (до нуля 16-ти разрядной компьютерной арифметики). Для получения дополнительного кода отрицательного числа можно использовать довольно простой алгоритм: 216 = 100000000000000002 6553610 200210 = 00000111110100102 200210 216 - 200210 = 11111000001011102 6353410

17 слайд

ПРАВИЛО ПОЛУЧЕНИЯ ДОПОЛНИТЕЛЬНОГО КОДА Для получения дополнительного кода отрицательного числа можно использовать довольно простой алгоритм: 1. Модуль числа записать прямым кодом в n двоичных разрядах; 2. Получить обратный код числа, для этого значения всех бит инвертировать (все единицы заменить на нули и все нули заменить на единицы); 3. К полученному обратному коду прибавить единицу.

18 слайд

ПРИМЕР ЗАПИСАТЬ ДОПОЛНИТЕЛЬНЫЙ КОД ОТРИЦАТЕЛЬНОГО ЧИСЛА –2002 ДЛЯ 16-ТИ РАЗРЯДНОГО КОМПЬЮТЕРНОГО ПРЕДСТАВЛЕНИЯ С ИСПОЛЬЗОВАНИЕМ АЛГОРИТМА. При n-разрядном представлении отрицательного числа А дополнительным кодом старший разряд выделяется для хранения знака числа (единицы). В остальных разрядах записывается положительное число: 2n-1 - A . Чтобы число было положительным должно выполняться условие: A ≤ 2n-1 Следовательно, максимальное значение модуля числа А в n-разрядном представлении равно: A = 2n-1 Тогда, минимальное отрицательное число равно: A = -2n-1 Прямой код -200210 00000111110100102 Обратный код инвертирование 11111000001011012   прибавление единицы 11111000001011012 + 00000000000000012 Дополнительный код   11111000001011102

19 слайд

ПРИМЕР. ВЫПОЛНИТЬ АРИФМЕТИЧЕСКОЕ ДЕЙСТВИЕ 300010 - 500010 В 16-ТИ РАЗРЯДНОМ КОМПЬЮТЕРНОМ ПРЕДСТАВЛЕНИИ. Представим положительное число в прямом, а отрицательное число в дополнительном коде: Десятичное число Прямой код Обратный код Дополнительный код 3000 0000101110111000     -5000 0001001110001000 1110110001110111 1110110001110111 +0000000000000001 1110110001111000

20 слайд

СЛОЖИМ ПРЯМОЙ КОД ПОЛОЖИТЕЛЬНОГО ЧИСЛА С ДОПОЛНИТЕЛЬНЫМ КОДОМ ОТРИЦАТЕЛЬНОГО ЧИСЛА. ПОЛУЧИМ РЕЗУЛЬТАТ В ДОПОЛНИТЕЛЬНОМ КОДЕ: Переведем полученный дополнительный код в десятичное число: 1)       Инвертируем дополнительный код: 0000011111001111 2)       Прибавим к полученному коду 1 и получим модуль отрицательного числа: 0000011111001111 + 0000000000000001 0000011111010000 3000-5000     1111100000110000

21 слайд

3) Переведем в десятичное число и припишем знак отрицательного числа: -2000. Недостатком представления чисел в формате с фиксированной запятой является конечный диапазон представления величин, недостаточный для решения математических, физических, экономических и других задач, в которых используются как очень малые, так и очень большие числа.

22 слайд

23 слайд

МАТЕМАТИКА: множество целых чисел дискретно, бесконечно, не ограничено ИНФОРМАТИКА: множество целых чисел дискретно, конечно, ограничено

24 слайд