X

Скопируйте код и вставьте его на свой сайт.

Ширина px

Вы можете уменьшить размер презентации, указав свой размер!

Свойства комплексных соединений

Тема 10. Комплексные соединения Занятие 2. Свойства комплексных соединений 1....
Цели занятия: 1. Рассмотреть природу химической связи в комплексных соединени...
1. Природа химической связи в комплексных соединениях
Способы описания химической связи в комплексных соединениях 1. Метод валентны...
Положения метода валентных связей 1. В комплексе связь между комплексообразов...
ГЭФ и БЦЭФ комплексообразователя Атом Fe: Fe0 1s22s22p63s23p6 4s23d6 Fe3+ 1s2...
Спектрохимический ряд СO > CN– > NH3 > NO2– > H2O > OH > F > NО3 > SCN Cl > B...
[Co(H2O)6]2+ розовый [Co(CH3COO)2] ярко-розовый [Co(NO2)6]4- оранжевый [Co(NH...
2. Реакции комплексных соединений. Устойчивость комплексных соединений и конс...
K3[Fe(CN)6] 3K+ + [Fe(CN)6]3- [Ag(NH3)2]Cl [Ag(NH3)2]+ + Cl- Диссоциация КС п...
[Ag(NH3)2]+ [Ag(NH3)]+ + NH3 [Ag(NH3)2]+ Ag+ + 2 NH3 Диссоциация КС по внутре...
Реакции комплексных соединений по внешней сфере 2K3[Fe(CN)6] + 3FeSO4 = Fe3[F...
Br- Br- 2Br- Cu2+ [CuBr]+ [CuBr2] [CuBr4]2- + H2O + H2O + H2O Ступенчатое обр...
Реакции комплексных соединений с разрушением комплекса 1.Образование более пр...
3. Разбавление K[AgCl2] = KCl + AgCl 5. Окислительно-восстановительные реакци...
При одинаковом координационном числе Сравнение прочности комплексов по общим ...
При разном координационном числе 1. Сравнение устойчивости комплексов по сред...
При разном координационном числе 3. Сравнение устойчивости комплексов по ступ...
Процессы образования и разрушения комплексов используются: - в аналитической ...
Класс
Автор

Свойства комплексных соединений

Описание презентации по отдельным слайдам:

1 слайд

Тема 10. Комплексные соединения Занятие 2. Свойства комплексных соединений 1. Природа химической связи в комплексных соединениях. 2. Реакции комплексных соединений. Устойчивость комплексных соединений и константа нестойкости. Учебные вопросы:

2 слайд

Цели занятия: 1. Рассмотреть природу химической связи в комплексных соединениях. 2. Изучить реакции комплексных соединений и факторы, влияющие на устойчивость. 3. Рассмотреть применение комплексных соединений в военно-химической практике. Основная литература: Н.С. Ахметов. Общая и неорганическая химия. М.: Высшая школа . 2003. С. 206-208. 2. Общая и неорганическая химия. Учебное пособие. СВИРХБЗ. Ч 3. 2003. C. 83-96. Дополнительная литература: Учебная программа по дисциплине «Общая и неорганическая химия». 2001. 19 с. 2. М.И. Сафарова. Общая и неорганическая химия в схемах и таблицах. Ч.1. Теоретические основы неорганической химии. Учебное пособие. Саратов. СВИРХБЗ. 2006. С. 80.

3 слайд

1. Природа химической связи в комплексных соединениях

4 слайд

Способы описания химической связи в комплексных соединениях 1. Метод валентных связей (МВС). 2. Теория кристаллического поля (ТКП). 3. Метод молекулярных орбиталей (ММО).

5 слайд

Положения метода валентных связей 1. В комплексе связь между комплексообразователем и лигандами координационная (ковалентная, донорно- акцепторная). Ионы внешней и внутренней сферы связаны ионной связью. Донор электронов - лиганд с неподеленными электронными парами. Акцептор электронов – комплексообразователь со свободными орбиталями. Степень перекрывания орбиталей - мера прочности связи. 2. В образовании связей участвуют гибридизованные орбитали комплексообразователя, что определяет гео-метрию комплекса. 3. Магнитные свойства определяются наличием неспаренных электронов.

6 слайд

ГЭФ и БЦЭФ комплексообразователя Атом Fe: Fe0 1s22s22p63s23p6 4s23d6 Fe3+ 1s22s22p63s23p64s03d5 Ион Fe3+: Ион F : Ион СN : F 1s22s22p5 С 1s22s22р2 N 1s22s22p3 CN 2s22p5

7 слайд

Спектрохимический ряд СO > CN– > NH3 > NO2– > H2O > OH > F > NО3 > SCN Cl > Br > I Внешнесферный комплекс [FeF6]3– Внутрисферный комплекс [FeCN6]3–

8 слайд

[Co(H2O)6]2+ розовый [Co(CH3COO)2] ярко-розовый [Co(NO2)6]4- оранжевый [Co(NH3)6]2+ буро-розовый Усиление поля лигандов Влияние поля лигандов на окраску комплексов

9 слайд

2. Реакции комплексных соединений. Устойчивость комплексных соединений и константа нестойкости

10 слайд

K3[Fe(CN)6] 3K+ + [Fe(CN)6]3- [Ag(NH3)2]Cl [Ag(NH3)2]+ + Cl- Диссоциация КС по внешней сфере (первичная диссоциация)

11 слайд

[Ag(NH3)2]+ [Ag(NH3)]+ + NH3 [Ag(NH3)2]+ Ag+ + 2 NH3 Диссоциация КС по внутренней сфере (вторичная диссоциация)

12 слайд

Реакции комплексных соединений по внешней сфере 2K3[Fe(CN)6] + 3FeSO4 = Fe3[Fe(CN)6]2 + 3K2SO4 [CoCl2(NH3)4]Cl + AgNO3 = [CoCl2(NH3)4]NO3 + AgCl K4[Fe(CN)6] + 4HCl = H4[Fe(CN)6] + 4KCl H2[PtCl6] + 2CsOH = Cs2[PtCl6] + 2H2O Fe4[Fe(CN)6]3 + 12 KOH = 4Fе(OH)3 + 3K4[Fe(CN)6]

13 слайд

Br- Br- 2Br- Cu2+ [CuBr]+ [CuBr2] [CuBr4]2- + H2O + H2O + H2O Ступенчатое образование и диссоциация бромидных комплексов меди (II) зеленый коричневый вишневый

14 слайд

Реакции комплексных соединений с разрушением комплекса 1.Образование более прочного комплекса Fe3+ + 6 SCN- = [Fe(SCN)6]3- красная окраска [Fe(SCN)6]3- + 6 F- = 6 SCN- + [FeF6]3- отсутствие окраски [FeF6]3- + Al3+ = Fe3+ + [AlF6]3-; отсутствие окраски Fe3+ + 6 SCN- = [Fe(SCN)6]3- красная окраска

15 слайд

3. Разбавление K[AgCl2] = KCl + AgCl 5. Окислительно-восстановительные реакции 2K3[Cr(ОH)6] + 3Сl2 + 4KOH = 2K2CrO4 + 6KCl + 8H2O 4. Нагревание t0 K3[Cr(ОH)6] = 3KOH + Cr(OH)3 2. Образование малорастворимого соединения [Ag(NH3)2]NO3 + KI = AgI + 2NH3 + KNO3

16 слайд

17 слайд

При одинаковом координационном числе Сравнение прочности комплексов по общим константам нестойкости [Fe(SCN)6]3- + 6 F- = 6 SCN- + [FeF6]3-; [FeF6]3- + Al3+ = Fe3+ + [AlF6]3-

18 слайд

При разном координационном числе 1. Сравнение устойчивости комплексов по средней константе нестойкости где n – координационное число

19 слайд

20 слайд

При разном координационном числе 3. Сравнение устойчивости комплексов по ступенчатым константам нестойкости

21 слайд

Процессы образования и разрушения комплексов используются: - в аналитической химии; - при выделении химических элементов; - в гальванотехнике; - в борьбе с коррозией металлов; - в производстве ядерного горючего; - в практике дезактивации; - при индикации токсических соединений при производстве веществ с заранее заданными свойствами в качестве катализаторов и т.д.