X

Скопируйте код и вставьте его на свой сайт.

Ширина px

Вы можете уменьшить размер презентации, указав свой размер!

Некоторые следствия из аксиом

Урок 2
А В С Д Р Е К М А В С Д А1 В1 С1 Д1 Q P R К М 2) №1 (в,г); 2(б,д). Назовите п...
Теорема 1. Через прямую и не лежащую на ней точку проходит плоскость и притом...
Теорема 2. Через две пересекающиеся прямые проходит плоскость, и притом тольк...
Решить задачу № 6 А В С α Три данные точки соединены попарно отрезками. Докаж...
Задача. А В С Д М О АВСД – ромб, О – точка пересечения его диагоналей, М – то...
А В С Д 60º 4 4 4 4 SАВСД = АВ · АД · sinA SАВСД = (ВД · АС):2 Формулы для вы...
Домашнее задание: 1. Прочитать пункты 2; 3 на стр. 4 – 7 2. Выучить теоремы 1...
Класс
Автор

Некоторые следствия из аксиом

Описание презентации по отдельным слайдам:

1 слайд

Урок 2

2 слайд

А В С Д Р Е К М А В С Д А1 В1 С1 Д1 Q P R К М 2) №1 (в,г); 2(б,д). Назовите по рисунку: в) точки, лежащие в плоскостях АДВ и ДВС; г) прямые по которым пересекаются плоскости АВС и ДСВ, АВД и СДА, РДС и АВС. б) плоскости, в которых лежит прямая АА1; д) точки пересечения прямых МК и ДС, В1С1 и ВР, С1М и ДС. Проверка домашнего задания: 1)Сформулируйте аксиомы стереометрии и оформите рисунки на доске.

3 слайд

Теорема 1. Через прямую и не лежащую на ней точку проходит плоскость и притом только одна. Дано: а, М ¢ а Доказать: (а, М) с α α- единственная а М α Доказательство : 1. Р, О с а; {Р,О,М} ¢ а Р О По аксиоме А1: через точки Р, О, М проходит плоскость . По аксиоме А2: т.к. две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости, т.е. (а, М) с α 2. Любая плоскость проходящая через прямую а и точку М проходит через точки Р, О, и М, значит по аксиоме А1 она – единственная. Ч.т.д. Некоторые следствия из аксиом:

4 слайд

Теорема 2. Через две пересекающиеся прямые проходит плоскость, и притом только одна. Дано: а∩b Доказать: 1. (а∩b) с α 2. α- единственная а b М Н α Доказательство: 1.Через а и Н а, Н b проходит плоскость α. (М , Н) α, (М,Н) b, значит по А2 все точки b принадлежат плоскости. 2. Плоскость проходит через а и b и она единственная, т.к. любая плоскость, проходящая через прямые а и b, проходит и через Н, значит α – единственная.

5 слайд

Решить задачу № 6 А В С α Три данные точки соединены попарно отрезками. Докажите, что все отрезки лежат в одной плоскости. Доказательство: 1. (А,В,С) α, значит по А1 через А,В,С проходит единственная плоскость. 2. Две точки каждого отрезка лежат в плоскости, значит по А2 все точки каждого из отрезков лежат в плоскости α. 3. Вывод: АВ, ВС, АС лежат в плоскости α 1 случай. А В С α 2 случай. Доказательство: Так как 3 точки принадлежат одной прямой, то по А2 все точки этой прямой лежат в плоскости.

6 слайд

Задача. А В С Д М О АВСД – ромб, О – точка пересечения его диагоналей, М – точка пространства, не лежащая в плоскости ромба. Точки А, Д, О лежат в плоскости α. Определить и обосновать: Лежат ли в плоскости α точки В и С? Лежит ли в плоскости МОВ точка Д? Назовите линию пересечения плоскостей МОВ и АДО. Вычислите площадь ромба, если сторона его равна 4 см, а угол равен 60º. Предложите различные способы вычисления площади ромба.

7 слайд

А В С Д 60º 4 4 4 4 SАВСД = АВ · АД · sinA SАВСД = (ВД · АС):2 Формулы для вычисления площади ромба: ∆АВД = ∆ВСД (по трем сторонам), значит SАВД = SВСД.

8 слайд

Домашнее задание: 1. Прочитать пункты 2; 3 на стр. 4 – 7 2. Выучить теоремы 1, 2 ( с доказательством); повторить аксиомы А1 – А3 3. Решить задачу №8 ( с объяснением ответов)