X

Скопируйте код и вставьте его на свой сайт.

Ширина px

Вы можете уменьшить размер презентации, указав свой размер!

Сферические координаты

Сферические координаты Пусть A – точка в пространстве с заданной системой коо...
Сферические координаты Декартовы координаты (x,y,z) точки в пространстве выра...
Сферические координаты Точки на сфере, имеющие одинаковый угол ψ, образуют ок...
Упражнение 1 Найдите декартовы координаты следующих точек пространства, задан...
Упражнение 2 Найдите сферические координаты следующих точек пространства, зад...
Упражнение 3 Найдите сферические координаты вершин куба, задаваемого в декарт...
Упражнение 4 Точка A имеет сферические координаты (r, , ). Найдите сферически...
Упражнение 5 Найдите геометрическое место точек пространства, сферические коо...
Упражнение 6 Какая фигура в пространстве задается неравенствами: а) 0 r 1, 0 ...
Упражнение 7 Найдите расстояние между точками, заданными своими сферическими ...
Упражнение 8 Где закончится локсодромия, образующая острый угол с меридианами...
Упражнение 9 Напишите уравнение сферы в сферических координатах Ответ: r = 1.
Упражнение 10 Найдите длины дуг локсодромии и ортодромии, соединяющих точки A...
Класс
Автор

Сферические координаты

Описание презентации по отдельным слайдам:

1 слайд

Сферические координаты Пусть A – точка в пространстве с заданной системой координат. Ортогональную проекцию точки A на плоскость Oxy обозначим A', а длину вектора ОA - через r. Угол наклона вектора к плоскости Оxy обозначим ψ, причем будем считать его изменяющимся от -90o до +90o. Если точка A расположена в верхнем полупространстве, то угол ψ считается положительным, а если в нижнем, то отрицательным. Угол между вектором и осью Ox обозначим φ. Тройка (r, ψ , φ) называется сферическими координатами точки A в пространстве.

2 слайд

Сферические координаты Декартовы координаты (x,y,z) точки в пространстве выражаются через ее сферические координаты по формулам и, наоборот, если заданы декартовы координаты, то по ним можно найти сферические координаты по формулам

3 слайд

Сферические координаты Точки на сфере, имеющие одинаковый угол ψ, образуют окружность, которая называется параллелью. Точки, имеющие одинаковый угол φ, образуют полуокружность, называемую меридианом. Дуга большой окружности, соединяющая две точки сферы, является кратчайшим путем на сфере между этими двумя точками. Такой путь называют ортодромией, что в переводе с греческого означает "прямой бег". Кривая, образующая равные углы с разными меридианами, называется локсодромия, что в переводе с греческого означает "косой бег".

4 слайд

Упражнение 1 Найдите декартовы координаты следующих точек пространства, заданных своими сферическими координатами: (1,45°,120°), (2,-30°,-90°), (1,90°, 60°).

5 слайд

Упражнение 2 Найдите сферические координаты следующих точек пространства, заданных своими декартовыми координатами: A(1,1,1), B(-1,0,1), C(0,0,2).

6 слайд

Упражнение 3 Найдите сферические координаты вершин куба, задаваемого в декартовых координатах системой неравенств

7 слайд

Упражнение 4 Точка A имеет сферические координаты (r, , ). Найдите сферические координаты точки, симметричной данной, относительно: а) координатных плоскостей; б) осей координат; в) начала координат. Ответ: а) (r, - , ), (r, , 180о- ), (r, , - ); б) (r, - , - ), (r, - , 180о- ), (r, , 180о+ ); в) (r, - , 180о+ ).

8 слайд

Упражнение 5 Найдите геометрическое место точек пространства, сферические координаты которых удовлетворяют условиям: а) r постоянно; б) постоянно; в) постоянно. Ответ: а) Сфера; б) коническая поверхность; в) полуплоскость.

9 слайд

Упражнение 6 Какая фигура в пространстве задается неравенствами: а) 0 r 1, 0 ; б) 0 r 1, 0 ; в) 0 r 1, 0 , 0 ? Ответ: а) Полушар; б) полушар; в) четверть шара.

10 слайд

Упражнение 7 Найдите расстояние между точками, заданными своими сферическими координатами: A( ,0°,45°), B(2,60°,0°). Ответ: 2.

11 слайд

Упражнение 8 Где закончится локсодромия, образующая острый угол с меридианами, при ее продолжении в обе стороны? Ответ: На полюсах.

12 слайд

Упражнение 9 Напишите уравнение сферы в сферических координатах Ответ: r = 1.

13 слайд

Упражнение 10 Найдите длины дуг локсодромии и ортодромии, соединяющих точки A1(R, 45°, 0°), A2(R, 45°, 180°) на сфере.